MobilityFirst Software and API

MobilityFirst Workshop

Organized as a part of:

Project: Engaging undergraduates in research that speaks their language
Sponsoring Agency: The Thurgood Marshall College Fund
Sponsoring program: Undergraduate Research to Retain and Graduate Students in
STEAM

Shweta Jain, PH.D.
Assistant Professor and Doctoral Faculty
sjain@york.cuny.edu

York College of CUNY

Slides based on: F. Bronzino, K. Nagaraja, |. Seskar, D. Raychaudhuri, " Network Service
Abstractions for a Mobility-Centric Future Internet Architecture” MobiArch 2013

20

Overview

@ MobilityFirst APl Network service abstractions
© Network Architecture Implication
© MobilityFirst API

@ MobilityFirst API: Deployment Steps

20

MobilityFirst APl: Network Service Abstractions

Name based services

Direct addressability of all network principals

°
°

@ Trust and privacy

@ Point to multi-point communication
°

In-network storage and computation

Each abstraction translates to a function in the network architecture

Network Architecture Implication

Network Architecture

Name based service
Requirement: Refer to everything by name and seamlessly handle mobility

of moving targets
Architecture provides: Dynamic and fine-grained location resolution

Direct addressability of all network principals

Requirement: Virtually inhaustible name space
Architecture provides: 256 bit space to encode names

Trust and privacy

Requirement: Longer names with flat structure (for location privacy)
Architecture provides: Public key based name and name assignment and
resolution services

/ 20

Network Architecture Implication

Network Architecture

Point to multi-point communication

Requirement: Suport to create and manage groups of member IDs
dynamically available to the routing fabric

Architecture provides: Routing protocol that supports unicast, multicast,
anycast, multihoming and late binding of name to location

In-network storage and computation

Requirement: Storage and computation capability in the routers or
attached to routers

Architecture provides: Storage aware routing and content caching
capabilities in routers

MobilityFirst API: Basic Operations

Endpoint/Socket creation, customization and teardown

Open a mobilityFirst socket

open (profile, [profile-opts], [src-GUID])

@ Profile is a descriptive element that inform the system about the
intent of the application.

@ Profile-opts are optional additional parameters that to request
additional services expressed as flags

@ GUID-set is optional and represents the set of GUIDs that the
application is willing of listening at

Close the session initiated with an open call and clear the resources that
were allocated.

close();

6/20

MobilityFirst API: Basic Operations

Name-based messaging
send (dst-GUID, data, [svc-opts]);

@ dst-GUID represents the destination GUID.
@ data is the data message to be sent.

@ svc-opts are additional service options used to determine how the
message is delivered expressed as flags.

recv(src-GUID, buffer, [GUID-set]);

@ src-GUID is a variable that will be filled with the GUID of the entity
that sent the message

@ buffer is filled with the message that has been transmitted

@ GUID-set is optional and can be used to limit the set of GUIDs to
receive from 7/2

MobilityFirst API: Basic Operations

Management of network presence

Add additional GUIDs at other than those originally identified during the
open call

attach(GUID-set);

@ GUID-set represents the set of GUIDs that the application wants to
add at the set that it is listening at

Remove GUIDs from the one originally identified during the open call or
the ones added through the use of attach

detach(GUID-set);

@ GUID-set represents the set of GUIDs that the application wants to
remove from the set that it is listening at

20

MobilityFirst API: Basic Operations Example

Filename: mf-usage.c

#include <stdio.h>
#include <stdlib.h>
#include <mfapi.h>
int main(int argc, char *argv[]) {
struct Handle handle;
int mine, other, sent = 0, received = 0;
char role;
int size = 65%x1024;
int *recvFrom;

// --maybe read a file and save it in the buffer
u_char buf [size];
role = atoi(argv[1]);

mine = atoi(argv[2]);

other = atoi(argv[3]);

20

MobilityFirst API: Basic Operations Example

int ret = mfopen(&handle, "basic\0", 0, mine);
if(ret) {
fprintf (stderr, "receiver: mfopen error\n");
return (EXIT_FAILURE);
}
if (role == ’s’)
{
sent = mfsend(&handle, buf, size, other, 0);
if (sent < 0) {
fprintf (stderr,"mfsendmsg error\n");
return EXIT_FAILURE;

10/20

MobilityFirst API: Basic Operations Example

else
{ //Wait to receive new message
received = mfrecv_blk(&handle, recvFrom,
buf, size, 0, 0);
if (received < 0)
{
fprintf (stderr,"mfrecv_blk error\n");
return EXIT_FAILURE;

}
printf("Intended to send ’d bytes,
sent %d bytes, received %d bytes\n",
size, sent, received);
mfclose(&handle) ;
return EXIT_SUCCESS;

20

Setting up a MobilityFirst network

Download, prepare and install MobilityFirst stack (For Linux and android)
Use this script to streamline your installation on ubuntu based machines:
"mobilityfirst_install_script.pdf" (click to open file)
Remember to adjust the commands for your credentials for
bitbucket.org

12/20

"mobilityfirst_install_script.pdf"

MobilityFirst APIl: Deployment Steps

o

© 00

Define network graph and assign GUIDs to each routing element and
end-host. Current implementations accept a 32-bit integer for GUID.

Translate network graph to a corresponding GUID-based topology file
Establish IP connectivity between all routing elements

Bring up GNRS instances (for simple networks, single-server GNRS
configuration may suffice). Test the GNRS service using sample
command line clients in the release.

Bring up a MF routers

Bring up MF protocol stacks on each end-host. Host stacks can
determine their access router either automatically (by latching onto a
period broadcast beacon), or can be forced to associate with a
particular one by specifying router MAC and IP.

Run your application

13 /20

MobilityFirst APIl: Deployment Steps

Steps 1 and 2: Define network graph and generate
topology file

Simple experiment topology:

Sender —---———- | Router |-———-- Receiver
(GUID 1) | (GUID 2) | (GUID 3)

Create a topology for the experiment above and save it in topo.tp:
Syntax of the topology file is:

<GUID> <number of neighbors> <List of neighbor GUIDs>

The above example topology is given below:

3

w N =

1
2
1

N = N

14 /20

MobilityFirst APIl: Deployment Steps

Step 3: Establish IP connectivity between all routing
elements (Wi-Fi Instructions)

Things to consider before proceeding in this step:
@ For first time users, a wired set up is much easier to work for example
a lab with networked PCs (typical undergraduate teaching lab)
@ The wifi hostapd setup works only with wi-fi cards that are able to
work in master mode (typically Atheros chipsets). For all others, use
an access point to establish IP connectivity

Setup up hostapd and dnsmasq on the middle routing element (GUID 2)
using instructions in this file: "hostapd_dnsmasq.pdf"

Connect all routing elements and end hosts to the access point that
was created using the above instructions

15/20

"hostapd_dnsmasq.pdf"

Steps 4 and 5

Step 4: Bring up GNRS instances

cd $MF_HOME/gnrs/jserver

java \

-Dlog4j.configuration=file:sample-configs/single-server/log4j.xml

-jar target/gnrs-server-1.0.0-SNAPSHOT-jar-with-dependencies.jar \
sample-configs/single-server/server.xml

v

Step 5: Start the MobilityFirst Basic Router

cd $MF_HOME/router/click/conf

export MF_CLICK_LOG_LEVEL=1

sudo -E click -j 4 MF_BasicRouter.click topo_file=topo.tp \
my_GUID=2 core_dev=wlanO

16 /20

MobilityFirst API: Deployment Steps

Step 6: Bringing up the MobiliyFirst stack on the sender
and receiver

Settings file at the sender (GUID 1)

INTERFACE = wifi,wlanO,manual, 192.168.1.1, <mac address

of the router (GUID 2)>
POLICY = wifionly
BUFFER_SIZE = 10
DEFAULT_GUID = 1
IF_SCAN_PERIOD = 5

Settings file at the receiver (GUID 3)
Same as above except: DEFAULT_GUID = 3

Bring up the MobilityFirst stack on the two end hosts

sudo cp $MF_HOME/hoststack/bin/mfstack /data/mfdemo
sudo /data/mfdemo/mfstack -d /data/mfdemo/settings.conf

4
17/20

MobilityFirst API: Deployment Steps

Compiling and running the example application on Linux

Sender application

gcc mf-usage.c -I$MF_HOME/common \
-I$MF_HOME/netapi/c -lmfapi -lpthread -o mf_usage
sudo ./mf_usage s 1 3

Receiver application

gcc mf-usage.c -I$MF_HOME/common \
-I$MF_HOME/netapi/c -1lmfapi -lpthread -o mf_usage
sudo ./mf_usage r 3 1

18 /20

MobilityFirst API: Deployment Steps

Comments or Questions?

19/20

MobilityFirst APIl: Deployment Steps

Homework

Final reports are due next week

Blog about what you like, dislike or think about the paper and this
presentation

20/20

	MobilityFirst API Network service abstractions
	Network Architecture Implication
	MobilityFirst API
	MobilityFirst API: Deployment Steps

